SEE HANDOUT ON MY WEBSITE

Use the <u>definition</u> of the definite integral and the theorem about continuous integrands to evaluate $\int (2x-4) dx$. SCORE: _____/9 PTS

NOTE: 0 points if you use the Fundamental Theorem of Calculus or geometry instead.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(-3 + \frac{4i}{n}) \frac{4}{n}$$

$$=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}\left(-10+\frac{8i}{n}\right)$$

$$=\lim_{n\to\infty}\frac{4}{n}\left[\frac{10n+\frac{8}{n}n(n+1)}{2}\right]$$

$$= 4(-10+4)$$

The graph of function
$$f$$
 is shown on the right.

Find $\int_{0}^{4} f(t) dt$.

Find $\int_{a}^{4} f(t) dt$.

 $=-\int_{4}^{5}f(t)dt$

= $-1+\frac{3}{2}+5$

[a]

Find
$$\int_{-2}^{1} f(t) dt$$
.
= $\int_{-2}^{-1} f(t) dt + \int_{-1}^{2} f(t) dt + \int_{-1}^{4} f(t) dt$

SCORE:

 $-\frac{1}{2}(2)(1)+\frac{1}{2}(1)(3)+\frac{(1+4)}{2}2$

the area of shaded region
$$B$$
 is 8 , and the area of shaded region C is 2 , find $\int_{-3}^{3} (7-4f(x)) dx$.

For full credit, you must clearly show the use of all necessary properties of the definite integral,

Minimal credit will be given for arithmetic alone.

SCORE:

The graph of f(x) is shown on the right. If the area of shaded region A is 3.

Sketch a region whose area is given by the expression $\lim_{n\to\infty}\sum_{i=1}^n\frac{2}{n}\,e^{-5+\frac{2i}{n}}$. Label your graph clearly. $f(a+i\Delta x) = f(a+2i) = e^{-5+2i}$

SCORE:

$$a = -5 \rightarrow b = -3$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$